

Объединение независимых экспертов в области минеральных ресурсов, металлургии и химической промышленности

Обзор рынка лития и его соединений в СНГ

Демонстрационная версия

Москва июнь, 2011

Internet: <u>www.infomine</u>.ru e-mail: <u>info@infomine</u>.ru

СОДЕРЖАНИЕ

Аннотация	8
ВВЕДЕНИЕ	9
1. Минерально-сырьевая база лития и производство литиевой проду	кции
за рубежом	10
1.1. Виды литиевого сырья	
1.1.1. Месторождения гидротермального сырья	
1.1.2. Месторождения, связанные с редкометалльными гранитными пегматите	
1.2. Мировые запасы лития	14
1.3. Методы обогащения литиевого сырья	16
1.4. Добыча литиевого сырья за рубежом	18
1.5. Качество литиевых концентратов основных мировых производител	
Требования к металлическому литию и его соединениям в зависимости	
области потребления	
1.6. Компании – крупнейшие продуценты литиевых продуктов и сырья	
1.7. Мировые цены на литиевую продукцию	
1.8. Мировое потребление соединений лития	
	— .
2. Минерально-сырьевая база лития в РФ и странах СНГ	29
2.1. Месторождения, связанные с редкометалльными пегматитами	
2.1.1. Завитинское месторождение	
2.1.2. Месторождения Восточно-Саянского пегматитового пояса (Иркутская	
область)	
2.1.3. Колмозерское месторождение	
2.1.4. Полмостундровское месторождение	
2.1.5. Тастыгское месторождение	
2.2. Месторождения, связанные с редкометалльными гранитами	
2.2.1. Орловское месторождение	
2.2.2. Этыкинское месторождение	
2.3. Слюдисто-флюоритовые руды (Пограничное и Вознесенское	
месторождения)	38
•	
2.4. Месторождения гидротермального сырья	
2.5. Месторождения литиевого сырья стран СНГ	40
2. Визмичетовного операции ВФ с титиом и ото состинения	42
3. Внешнеторговые операции РФ с литием и его соединениями	
3.1. Импорт карбоната лития	
3.1.2. Основные направления, тенденции и особенности импортных поставок	42
з.1.2. Основные направления, теноенции и особенности импортных поставок карбоната лития в Россию в 2000-2010 гг	42
3.2. Импорт хлорида лития	
3.3. Импорт-экспорт моногидрата гидроксида лития	
3.3.1. Объемы импорта-экспорта моногидрата гидроксида лития	
<u> </u>	

3.3.2. Основные направления, тенденции и особенности импортных поставок технического моногидрата гидроксида лития в Россию в 2000-2010 гг	16
технического моногиората гиороксиой лития в Fоссию в 2000-2010 гг	,40
технического моногидрата гидроксида лития из России в 2000-2010 гг	48
3.4. Экспорт металлического лития в РФ в 2001-2010 гг	
3.4.1. Объемы экспорта металлического лития в 2001-2010 гг	
3.4.2. Основные направления, тенденции и особенности экспортных поставок	
металлического лития из России в 2001-2010 гг	
3.5. Экспорт моногидрата гидроксида лития-7	
3.6. Обзор экспортно-импортных цен на литиевые продукты	52
4. Производство лития и литиевых соединений в России	54
4.1. ОАО «Химико-металлургический завод» (Красноярск)	54
4.2. ОАО «Новосибирский завод химических концентратов»	60
4.3. Прочие производители литиевой продукции в РФ	
5. Потребление лития и литиевых соединений в РФ	66
5.1. Потребление лития в алюминиевой промышленности	
5.2. Потребление лития в производстве консистентных смазок	
5.3. Потребление лития в производстве алюминий-литиевых сплавов	
5.4. Производство химических источников тока (ХИТ)	
5.5. Производство литиевых катализаторов (бутиллития)	
5.6. Применение лития в выпуске химических волокон	
5.7. Прочие области применения лития в РФ	
6. Структура потребления лития в РФ	81
7. Программы и проекты по развитию литиевой промышленности в России	82
	07
8. Прогноз потребления лития и его соединений в России до 2017 г	. . 87
Приложение 1. Адресная книга основных предприятий-производителе	ей
литиевой продукции РФ	90
Приложение 2. Адресная книга основных потребителей литиевой	
пролукции в РФ	. 90

СПИСОК ТАБЛИЦ

- Таблица 1. Характеристика основных месторождений рапы соляных озер
- Таблица 2. Минералы лития, имеющие промышленное значение
- Таблица 3. Крупнейшие мировые месторождения лития в редкометалльных пегматитах
- Таблица 4. Мировые запасы лития на 1.01.2010, тыс. т
- Таблица 5. Динамика добычи литиевого сырья за рубежом в 2000-2010 гг., т (в пересчете на литий)
- Таблица 6. Качество минеральных концентратов, производимых за рубежом
- Таблица 7. Химический состав карбоната лития для различных областей потребления, %
- Таблица 8. Химический состав литиевых солей, выпускаемых компанией Chemetall GmbH (%)
- Таблица 9. Химический состав металлического лития для различных областей потребления, %
- Таблица 10. Средние экспортные цены на литиевое сырье и литиевую продукцию в 2000-2010 гг.,
- Таблица 11. Основные области применения лития и литиевых соединений
- Таблица 12. Структура учтенных Государственным балансом запасов лития РФ
- Таблица 13. Импортные поставки карбоната лития в РФ по странам в 2000-2010 гг., т
- Таблица 14. Основные российские компании—импортеры карбоната лития в 2005-2010 гг., т
- Таблица 15. Российские фирмы-импортеры хлорида лития в 2004-2010 гг., т
- Таблица 16. Импортные поставки технического моногидрата гидроксида лития в РФ по странам в 2000-2010 гг.
- Таблица 17. Основные российские экспортеры гидроксида лития в 2000-2010 гг., т
- Таблица 18. Основные российские экспортеры металлического лития в 2001-2010 гг., т
- Таблица 19. Направления экспортных поставок российского металлического лития по странам в 2001-2010 гг., т
- Таблица 20. Направления экспортных поставок моногидрата гидроксида лития-7 в 2001-2010 гг., т
- Таблица 21. Химический состав гидроксида лития моногидрата производства OAO «Красноярский химико-металлургический завод» ГОСТ 8595-83, %
- Таблица 22. Химический состав металлического лития производства ОАО «Красноярский химико металлургический завод» ГОСТ 8774-75, %
- Таблица 23. Химический состав различных сортов лития металлического, производства ОАО «НЗХК», %
- Таблица 24. Химический состав моногидрата гидроксида лития-7 (Li⁷OH·H₂O), производства ОАО «НЗХК»
- Таблица 25. Химический состав хлористого лития, производства ОАО «НЗХК», % (ТУ 95.1926-89)

- Таблица 26. Внутреннее потребление лития и его соединений в России в 2001-2010 гг., в пересчете на металл, т
- Таблица 27. Динамика закупок карбоната лития ОАО «СУАЛ» в 2001-2010 гг., т и динамика производства первичного алюминия РФ, тыс. т
- Таблица 28. Состав пластичных литийсодержащих смазок, выпускаемых российскими предприятиями для различных отраслей промышленности
- Таблица 29. Структура выпуска литиевых смазок в РФ, тыс. т
- Таблица 30. Перечень предприятий России, выпускающих литийсодержащие смазки
- Таблица 31. Основные технические характеристики литий-ионных аккумуляторов производства ОАО «Ригель»

СПИСОК РИСУНКОВ

- Рисунок 1. Динамика мировой добычи литиевого сырья в 2000-2010 гг., тыс. т в пересчете на 100% Li
- Рисунок 2. Мировая структура потребления лития в 2009 г., %
- Рисунок 3. Динамика импорта в РФ карбоната лития в 2000-2010 гг., т
- Рисунок 4: Динамика импорта в Россию хлорида лития в 2001-2010 гг., т
- Рисунок 5. Динамика импорта-экспорта в РФ технического моногидрата гидроксида лития в 2000-2010 гг., т
- Рисунок 6. Динамика экспорта лития металлического из РФ в 2001-2010 гг., т
- Рисунок 7. Динамика экспорта моногидрата гидроксида лития-7, кг
- Рисунок 8. Динамика экспортно-импортных цен в России на карбонат и технический моногидрат лития в 2000-2010 гг., \$/кг
- Рисунок 9: Динамика экспортных цен на российский металлический литий в $2001\text{-}2010\ \Gamma\Gamma$., \$/кГ
- Рисунок 10. Динамика экспортных цен на моногидрат гидроксида лития-7 в 2001-2010 гг., \$/кг
- Рисунок 11. Структура реализации продукции ОАО «XM3» по сегментам производства в 2009 г., %
- Рисунок 12. Динамика реализации технического моногидрата гидроксида лития OAO «XM3» (Красноярск) в 2004-2010 гг. на внешний и внутренний рынки, т
- Рисунок 13: Структура потребления лития и его соединений в РФ (2007-2010 гг.)
- Рисунок 14: Прогноз потребления лития и его соединений до 2017 г.

Аннотация

Представленный отчет посвящен обзору рынка лития и его соединений в России. Отчет подготовлен на основе изучения и анализа данных Федеральной службы государственной статистики РФ (ФСГС РФ), Федеральной таможенной службы РФ (ФТС РФ), официальной статистики внутренних железнодорожных перевозок РФ, Госкомстата а также данных "Инфомайн". Отчет состоит из 7 глав, содержит 92 страницы, в том числе 33 таблицы, 14 рисунков и 2 приложения.

Первая глава отчета посвящена минерально-сырьевой базе и производстве литиевой продукции за рубежом. Приведены сведения о мировой добыче литиевого сырья, ценах на литиевую продукцию. Описаны компании – крупнейшие продуценты литиевых соединений и сырья.

Вторая глава отчета посвящена минерально-сырьевой базе лития в РФ и странах СНГ. Даны краткие характеристики балансовых месторождений лития, а также перспективных сырьевых объектов.

В третьей главе анализируются внешнеторговые операции с литием и его соединениями в 2000-2010 гг. Приведены данные об объемах экспорта и импорта изучаемой продукции, оценена региональная структура поставок.

В четвертой главе приведены сведения о производстве лития и литиевых соединений в России в 2000-2010 гг. Рассмотрены основные производители. Представлены ГОСТы и ТУ на производимую литиевую продукцию.

Пятая глава отчета посвящена потреблению лития и его соединений в России. Описаны предприятия-потребители литиевых продуктов. Дан расчет баланса производства-потребления лития и его соединений в 2001-2010 гг.

В шестой главе отчета приведена структура потребления лития и его соединений по отраслям.

Седьмая глава отчета содержит прогноз производства и потребления лития и его соединений в России до 2017 г.

В приложениях указана контактная информация производителей и потребителей лития и его соединений.

ВВЕДЕНИЕ

По значимости в современной технике литий является одним из важнейших редких элементов. Литий – самый легкий металл. Благодаря малому объемному радиусу, он обладает наиболее прочной кристаллической решеткой, а следовательно, и наибольшей твердостью среди щелочных металлов. Литий легко образует сплавы почти со всеми металлами – алюминием, медью, свинцом, цинком, оловом и другими (за исключением железа).

Литий отличается большим разнообразием соединений, которые востребованы во многих областях применения. Отмечается растущее использование его в сфере высоких технологий: в составе сверхлегких сплавов, пьезо- и сегнетоэлектриков, оптических стекол и оптических кристаллов для сверхчастотной техники, батарей для компьютеров, мобильных и сотовых телефонов.

На бытовом уровне он находит применение в производстве упаковочного стекла для косметических изделий, кондиционеров, миниатюрных батарей для электронных игрушек, в фармацевтике и т. д.

Основные области применения лития:

- производство специального стекла и керамики;
- производство катализаторов;
- производство консистентных смазок;
- химические источники тока (ХИТ);
- электролиз алюминия.

Промышленным источником лития являются рапа соляных озер (65-75% мировой добычи) и коренные руды — редкометалльные гранитные пегматиты. Содержание оксида лития в разрабатываемых месторождениях составляет 1,3-3,0% и более. Основными промышленными минералами лития в пегматитах являются: сподумен (хим. состав: $\text{Li}_2\text{O} - 8,1\%$, Al_2O_3 27,4%, $\text{SiO}_2 - 64,5\%$), на который приходится 90% от общей добычи лития из минерального сырья. Кроме того, литиевыми минералами являются петалит, лепидолит, амблигонит, эвкриптит. Промышленные концентраты содержат Li_2O %: сподуменовые — 4-7,6; петалитовые — 3,5-4,5; лепидолитовые — 3,0-3,5; амблигонитовые — 6-8; эвкриптитовые — 5,5-6,5.

В промышленных месторождениях рапы литий присутствует, в основном, в виде хлорида. Среднее содержание Li_2O колеблется в пределах 0,01-0,5%.

Производство литиевой продукции в СССР на начало 90-ых годов находилось в диапазоне 1100-1300 т в пересчете на металл.

После распада Союза и экономического кризиса производство лития в России к 1994 г. сократилось почти в 4 раза. В годы кризиса производство лития для внутренних нужд упало до 97 т.

С 1997 г. законсервировано единственное месторождения лития в РФ – Забайкальский ГОК. В настоящее время Россия полностью зависима от импорта литиевого сырья.

1. Минерально-сырьевая база лития и производство литиевой продукции за рубежом

1.1. Виды литиевого сырья

1.1.1. Месторождения гидротермального сырья

Подавляющая часть подтвержденных запасов лития (более 75%) заключена в литийсодержащей рапе, где он присутствует в виде различных соединений (в основном сульфатов и хлоридов). Концентрации Li₂O в рассолах колеблется от 0,01% до 0,5% редко более. Помимо лития рассолы обогащены соединениями калия, натрия, брома, кальция И др. Месторождения литийсодержащих рассолов встречаются в мелководных бассейнах пустынных областей или в соляных озерах континентальных бассейнов, простираются на несколько десятков квадратных километров и залегают на глубине до 200 м от поверхности. Они характеризуются крупными запасами – в целом более 200 тыс. т лития. Промышленное извлечения лития целесообразно только в случае комплексной переработке сырья, что и реализуется на практике.

Рассол или рапу обычно концентрируют бассейновым (солнечным) выпариванием, кристаллизующиеся при этом соли являются товарными продуктами. Литий при выпаривании концентрируется в конечной рапе (маточнике) до 1 масс. % (10-14 кг/м³), откуда и производится его выделение по сложной схеме. Выпаривание обычно длится около года. Извлечение лития из рапы сопряжено с меньшими производственными издержками, чем добыча и переработка горнорудного сырья, хотя месторождения литийсодержащих пегматитов расположены обычно в местностях с более благоприятными климатическими условиями.

Образование озер и саларов с высокими концентрациями лития в рапе возможно только в зонах с аридным климатом. Основными соляными месторождениями лития в мире являются Salar de Atakama (Чили), Salar de Hombre (Аргентина), перспективными считаются запасы рапы в Боливии и Китае (табл. 1). В США (штат Невада) только один завод по производству карбоната лития расположен на предприятии, перерабатывающем рапу.

Таблица 1. Характеристика основных месторождений рапы соляных озер

_		Подтвер	Содерж	ание в рапе, %	Доля в	
Название объекта	Регион	жденные запасы Li ₂ O, тыс. т	Li ₂ O	Другие полезные компоненты	мирово й добыче, %	
Салар-де Атакама	Чили	6400	0,3	Калий, натрий, магний, бор	40	
Salar de Hombre Muerto	Аргентина	н.д	0,1	Калий, натрий, магний, бор	10-12	
Salar del Rincon	Аргентина	н.д	0,04-0,5	-	-	
Salar de Uyuni	Боливия	11500	0,03-0,07	Калий, бор	-	
Silver Peak	США	7,4	0,06	Калий, натрий. магний	5-10	

			11		
Dongtai Salt Lake	Китай	360	0,06	Бор	12-15
Zabayu Salt Lake	Китай	7200			

Источник: ФГУП ИМГРЭ, ВИМС, USGS

Солончак Атакама, на котором расположено крупнейшее эксплуатируемое месторождение в мире является самым засушливым местом на планете: уровень осадков здесь составляет 10 мм в год, а испарения – свыше 3 тыс. мм.

Самое крупное по запасам месторождение рапы соляных озер Salar de Uyuni находится в Боливии. Расположено на высоте 3650 м и занимает площадь более 10 км 2 . Средняя глубина озера - 121 м. Средняя концентрация рапы - 321 г/т.

1.1.2. Месторождения, связанные с редкометалльными гранитными пегматитами

C редкометальными гранитными пегматитами за рубежом связано около 23% запасов лития. Литиевые минералы представлены сподуменом, петалитом, лепидолитом и амблигонитом (табл. 2). Содержание Li_2O в разрабатываемых пегматитовых месторождениях составляет 1,3-3%, иногда более, минимально промышленное – 1%.

Таблица 2. Минералы лития, имеющие промышленное значение

Науменоромно формула		Содержание Li ₂ O		Плотность	TD ON HOOTY
Наименование	формула	Терет.	Практ.	г/см ³	твердость
Сподумен	$LiAl(S_2O_6)$	8,1	4,5-8	3,2	6,5-7
Лепидолит	KLi _{1,5} Al _{1,5} (S ₃ AlO ₁₀)(F,OH) ₂	5,9	1,23-5,9	2,8-2,9	2-3
Амблигонит	LiAl(PO ₄)(F,OH)	10,1	8-9,5	3-3,15	6,0
Петалит	(Li,Na)AlS ₄ O ₁₀	4,89	2-4	2,39-2,46	6-6,5

Источник: обзор научно-технической литература

Основными типами литиеносных пегматитовых месторождений являются сподуменовые (альбит-сподуменовые) Кингс-Маунтин, Маноно-Китотоло и др. и поллуцит-сподумен-танталитовые: Гринбушес, Бикита, Берник-Лейк и др. (табл. 3). Сподуменовые пегматиты отличаются крупными запасами (более 200 тыс. т Li) и относительно простым минеральным составом; они представлены параллельными жильными крутопадающими линейновытянутыми телами длинной 1-3 до 15-20 км, протягивающимися вдоль региональных зон разломов, мощность их изменяется от 0,5-1 до 20-25 м, вертикальный размах сподуменового оруденения достигает 3-3,5 KM. Поллуцит-сподументанатлитовые пегматиты характеризуются высокой комплексностью, пологим залеганием и поэтажным расположением пегматитовых тел, при этом верхние обогащены танталом, нижние – литием.

Таблица 3. Крупнейшие мировые месторождения лития в релкометалльных пегматитах

Месторождение, страна	Концентратор лития	Подтвержденные запасы лития, тыс. т Li	Содержание Li ₂ O в исх руде, %	Другие полезные компоненты
Jaijika, Китай, провинция Сычуань	Сподумен	1030	1,28	Н. д.
Gajika, Китай, провинция Сычуань	Сподумен	1200	-	Н. д.
Maerkang, Китай, провинция Сычуань	Сподумен	483	-	-
Кингс-Маунтин, США	Сподумен	780	1,5	бериллий
Bernic Lake, Канада	Сподумен, петалит, лепидолит	133	3,0	Тантал, цезий, бериллий, рубидий
Гринбушес, Австралия	Сподумен	1280	2,9 (в богатой зоне	Олово, ниобий,

Месторождение, страна	Концентратор лития	Подтвержденные запасы лития, тыс. т Li	Содержание Li ₂ O в исх руде, %	Другие полезные компоненты
			до 4)	тантал
Бикита, Зимбабве	Петалит, сподумен, амблигонит	30	3	Олово, бериллий, цезий, тантал

Источник: ФГУП ВИМС, USGS

1.2. Мировые запасы лития

Подтвержденные запасы лития в недрах зарубежных стран оцениваются Геологической службой США на начало $2010\,\mathrm{r}$. в $11\,\mathrm{mnh}\,\mathrm{t}$. (табл. 4). Более 75% запасов лития в недрах и 87% извлекаемых запасов учитывается в литийсодержащей рапе соляных озер с содержанием $\mathrm{Li_2O}$ от <0,1 до 0,5%. Остальное связано с редкометалльными пегматитами с содержанием $\mathrm{Li_2O}$ в разрабатываемых пегматитовых месторождениях 1,3-3%.

Таблица 4. Мировые запасы лития на 1.01.2010, тыс. т

Страна	База запасов	Извлекаемые запасы	Тип месторождения	
Γ	5.400	запасы	Рапа соляных	
Боливия	5400	-	озер	
Чили	3000	3000	Рапа соляных	
ТИЛИ	3000	3000	озер	
Китай	1100	540	Рапа, пегматиты	
США	410	38	Рапа, пегматиты	
Канада	360	180	Пегматиты	
Австралия	260	160	Пегматиты	
Бразилия	910	190	Пегматиты	
Зимбабве	27	23	Пегматиты	
Итого	11000	4100		
(округленно)	11000	7100		

Источник: ФГУП ИМГРЭ

Запасы лития имеются также в ряде других стран, в частности России, Аргентине, Португалии, Финляндии, Конго, Нигерии. ЮАР, Зимбабве.

Обеспеченность запасами мировой литиевой промышленности по современному уровню производства лития очень высокая — сотни лет только извлекаемыми запасами. Высокая обеспеченность запасами (от 50 до более 100 лет) характерна и для основных разрабатываемых месторождений, за исключением США, где запасы рассолов рассчитана на 15-20 лет. Не имеют запасов лития страны ЕС (за исключением Португалии) и Япония, являющиеся крупнейшими его потребителями.

Заметим, что часть литиевых ресурсов связана с нетрадиционными сырьевыми источниками – гекторитовыми глинами, нефтяными водами и геотермальными рассолами.

Несмотря на высокую обеспеченность запасами, в последнее десятилетие велись геологоразведочные работы. На севере Португалии были обнаружены месторождения пегматитов с промышленным содержанием сподумена стекольного сорта (5% Li_2O). В Финляндии новые месторождения лития обнаружены на западе страны. В Китае было открыто месторождение литийсодержащих соляных рассолов Zabuye Salt Lake (Тибет), запасы которого

оцениваются в 1 млн т лития. Геологоразведочные работы на пегматитовых объектах проводились также в Испании, Индии, Канаде и др.

1.3. Методы обогащения литиевого сырья

Для комплексной переработки озерной рапы применяют испарительное концентрирование с отбором кристаллизующихся солей. При этом литий концентрируется в остаточных маточниках хлор-кальциевого состава, из которого его можно извлекать методами ионного обмена или экстракции. Разработаны также варианты селективного извлечения лития из рассолов. Наряду с ионным обменом применяют метод осаждения двойных соединений солей лития с гидроксидом алюминия.

При обогащении твердых литиевых руд применяют сл. процессы:

- 1. Флотация жирными кислотами и их мылами с выделением в пенный продукт литиевых минералов, или катионными собирателями с выделением минералов пустой породы. Флотация занимает ведущее место в обогащении литиевых руд.
- 2. Обогащение в тяжелых суспензиях. Метод основан на различии плотностей сподумена (3,2 г/см 3) и минералов пустой породы. (2,6 г/см 3).
- 3. Термическое обогащение (декрипитация), применяемое для сподуменовых руд. Основано на способности сподумена переходить при нагревании руды из ά- в β-модификацию, вследствие чего сподумен растрескивается, рассыпается в порошок и его отделяют от минералов пустой породы грохочением или воздушной сепарацией.

Конечным продуктом обогащения литиеносных пегматитов являются минеральные концентраты, которые можно непосредственно использовать в производстве стекла. Кроме того, концентраты лития направляются на сложную энергоёмкую переработку с целью получения солей лития.

Сподуменовый концентрат перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого - разложение сподумена известняком при 1150- 1200 °C: В России при переработке сподуменовых концентратов Забайкальского ГОКа использовалась известковая технология.

$$Li_2O \cdot Al_2O_3 \cdot 4SiO_2 + 8CaCO_3 = Li_2O \cdot Al_2O_3 + 4(2CaO \cdot SiO_2) + 8CO_2$$

При выщелачивании спека водой в присутствии избытка извести алюминат лития разлагается с образованием гидроксида лития:

$$Li_2O \cdot Al_2O_3 + CaOH_2 = 2LiOH + CaO \cdot Al_2O_3$$

По сульфатному методу сподумен (и другие алюмосиликаты) спекают с сульфатом калия:

$$Li_{2}O \cdot Al_{2}O_{3} \cdot 4SiO_{2} + K_{2}SO_{4} = Li_{2}SO_{4} + K_{2}O \cdot Al_{2}O_{3} \cdot 4SiO_{2}$$

Сульфат лития растворяют в воде и из его раствора содой осаждают карбонат лития:

$$Li_2SO_4+Na_2CO_3=Li_2CO_3+Na_2SO_4$$
.

Металлический литий получают электролизом расплавленной смеси хлоридов Лития и калия при 400-460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и других материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом - железные стержни.

Черновой металлический литий содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси - рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения лития (в частности, алюмотермический способ).