Research Group

Объединение независимых консультантов и экспертов в области минеральных ресурсов, металлургии и химической промышленности

Обзор рынка нитрата калия в СНГ

Демонстрационная версия

Москва Октябрь, 2006

СОДЕРЖАНИЕ

Аннотация	7
Введение	
I. Технология производства нитрата калия и используемое в	
промышленности сырье	9
I.1. Основные физико-химические характеристики нитрата калия	
I.2. Способы производства нитрата калия	
Производство нитрата калия конверсионным способом	
Прямые способы производства калиевой селитры	
Получение нитрата калия нейтрализацией щелочей азотной кислото	
Получение нитрата калия абсорбцией калиевыми щелочами нитрозн	
2a30b	
І.З. Основные поставщики сырья, направления и объемы поставок калиевой	
селитры	16
II. Производство нитрата калия в СНГ	
II.1. Качество выпускаемой продукции	
II.2. Объем производства нитрата калия в СНГ в 1999-2005 гг.	
II.3. Основные предприятия-производители нитрата калия в странах СНГ	
II.4. Текущее состояние крупнейших производителей нитрата калия	
II.4.1. ОАО «Азот» (г. Березники, Пермский край)	
II.4.2. ЗАО «Северодонецкое объединение «Азот» (г. Северодонецк,	
Луганская обл., Украина)	29
III. Экспорт-импорт нитрата калия	
III.1. Объем экспорта-импорта нитрата калия в СНГ в 1999-2006 гг	
III.2. Тенденции и особенности экспортно-импортных поставок нитрата кал	
III.3. Основные направления экспортно-импортных поставок нитрата калия	37
IV. Обзор цен на нитрат калия	
IV.1. Внутренние цены на нитрат калия в СНГ	
IV.2. Динамика экспортно-импортных цен	44
V. Потребление нитрата калия в России/СНГ	49
V.1. Баланс потребления нитрата калия	
V.2. Структура потребления нитрата калия в России	
V.3. Основные отрасли-потребители нитрата калия	
V.3.1. Сельскохозяйственная промышленность	
V.3.2. Стекольная промышленность	
V.4. Основные предприятия-потребители нитрата калия в РФ	
V.4.1. ООО «БХЗ-Агро» (Костромская обл.)	
V.4.2. ОАО «Дятьковский хрусталь» (г. Дятьково, Брянская обл.)	
V.4.3. ЗАО АК «Химпек» (г. Москва)	
VI. Прогноз развития российского рынка нитрата калия в СНГ на период	
2010 г.	
Приложение 1	
Приложение 2	

СПИСОК ТАБЛИЦ

CHITCON THEOTHER	
Таблица 1. Физико-химические свойства нитрата калия	9
Таблица 2. Зависимость растворимости нитрата калия в воде с ростом	
температуры	9
Таблица 3. Расходные коэффициенты на 1 т калиевой селитры	
Таблица 4. Техническая характеристика и основные свойства нитрата ка	
(согласно ГОСТ 19790-74)	
Таблица 5. Производство нитрата калия в СНГ в 1999-2005 гг	
Таблица 6: Производство нитрата калия в СНГ по предприятиям	
в 1999-2005 гг.	21
Таблица 7. Основные предприятия-потребители нитрата калия производ	ства
ОАО «Азот» в 2003-2005 гг.	
Таблица 8. Страны-импортеры российского нитрата калия в 1999-2005 г	
	27
Таблица 9. Производство основных видов продукции на ЗАО	
«Северодонецкое объединение «Азот» в 2001-2005 гг.	29
Таблица 10. Страны-импортеры нитрата калия производства ЗАО	
«Северодонецкое объединение «Азот» в 1999-2006 гг	30
Таблица 11: Внешняя торговля нитратом калия в РФ в 1997-2005 гг	32
Таблица 12. Динамика экспортно-импортных операций с нитратом кали	
Украине в 1999-2005 гг	
Таблица 13. Доля экспорта нитрата калия в общем объеме его производо	ства в
РФ в 1997-2005 гг	35
Таблица 14. Доля экспорта нитрата калия в общем объеме его производо	
на Украине в 1999-2005 гг.	36
Таблица 15. Российский экспорт нитрата калия по странам	37
Таблица 16. Страны-поставщики нитрата калия в Россию в 1999-2005 га	г 38
Таблица 17. Украинский экспорт нитрата калия в 1999-2005 гг	40
Таблица 18. Импорт нитрата калия на Украину в 1999-2005 гг	41
Таблица 19. Внутренние цены на нитрат калия в странах СНГ в 2005 гг	· 43
Таблица 20. Среднеэкспортные цены на нитрат калия в 2003-2005 гг	
Таблица 21. Среднеимпортные цены на нитрат калия в 2003-2005 гг	45
Таблица 22. Среднегодовые экспортные цены на нитрат калия на Украи	
2003-2005 гг.	46
Таблица 23. Среднегодовые импортные цены на нитрат калия на Украин	
2003-2005 гг	
Таблица 24. Среднегодовые импортные цены на нитрат калия для росси	
потребителей в 2005 г.	48
Таблица 25. Объемы потребления нитрата калия в РФ в 1999-2005 гг	
Таблица 26. Доля импорта в объеме производства нитрата калия в РФ в	
1999-2005 гг	
Таблица 27. Динамика «кажущегося» потребления нитрата калия на Укр	
в 1999-2005 гг	
Таблица 28. Потребление нитрата калия в сельском хозяйстве в 2003-2005	гг52

Таблица 29. Производство некоторых продуктов сельского	хозяйства в РФ в
1990-2005 гг	53
Таблица 30. Основные предприятия-потребители нитрата ка	алия в стекольной
промышленности в 2005 г.	55
Таблица 31. Основные предприятия-потребители нитрата ка	алия в 2005 г 57
Таблица 32. Объемы проданной продукции ОАО «Дятьковс	кий хрусталь» в
1999-2004 гг.	59

СПИСОК РИСУНКОВ

Рисунок 1. Схема производства калиевой селитры конверсионным способом	
Рисунок 2. Динамика поставок хлорида калия с ОАО «Уралкалий» на ОАО	
«Азот» (Березники) в 1999-2005 гг	
Рисунок 3. Динамика производства нитрата калия в СНГ в 1999-2005 гг	
Рисунок 4. Структура производства нитрата калия в СНГ	. 22
Рисунок 5. Структура товарной продукции, выпускаемой ОАО «Азот» в	
2005 г	
Рисунок 6. Динамика производства нитрата калия на ОАО «Азот» в 1999-	
2005 FT	
Рисунок 7. Динамика производства нитрата калия на ЗАО «Северодонецко	
объединение «Азот» в 1999-2005 гг.	. 30
Рисунок 8. Динамика экспортно-импортных операций с нитратом калия в	2.2
России в 1999-2005 гг.	
Рисунок 9. Динамика экспортно-импортных операций с нитратом калия на	1
Украине в 1999-2005 гг.	
Рисунок 10. Доля экспорта нитрата калия в объеме его производства в РФ	
1999-2005 гг.	. 35
Рисунок 11. Доля экспорта нитрата калия в объеме его производства на	26
Украине в 1999-2005 гг.	
Рисунок 12. Структура российского экспорта нитрата калия в 1999-2005 гг	
Рисунок 13. Структура импорта нитрата калия в РФ в 1999-2005 гг	
Рисунок 14. Структура экспорта украинского нитрата калия в 1999-2005 гг.	
Рисунок 15. Структура импорта нитрата калия на Украине в 1999-2005 гг.	
Рисунок 16. Динамика среднегодовых экспортно-импортных цен на нитрат	
калия в РФ в 1999-2005 гг.	
Рисунок 17. Динамика средних экспортно-импортных цен на нитрат калия	на
Украине в 1999-2005 гг.	
Рисунок 18. Динамика «кажущегося» потребления и производства нитрата	
калия в РФ в 1999-2005 гг.	
Рисунок 19. Структура потребления нитрата калия в РФ в 2005 г	. 31
Рисунок 20. Количество внесенных удобрений под картофель, сахарную	<i>5</i> 2
свеклу и подсолнечник в 1990-2004 гг	. 33
Рисунок 21. Динамика производства картофеля, сахарной свеклы	<i>-</i> 1
(фабричной) и семян подсолнечника в РФ в 1990-2005 гг.	. 54
Рисунок 22. Объемы потребления нитрата калия в стекольной	<i>5 (</i>
промышленности в 2003-2005 гг	
Рисунок 23. Объем потребления ЗАО «Химпэк» нитрата калия в 2003-2005 гг	
Рисунок 24. Прогноз производства нитрата калия в России до 2010 г	. 62

Аннотация

Особенностью рынка нитрата калия является то, что эта продукция является необходимым сырьем в сельском хозяйстве и в стекольной промышленности.

В аграрной промышленности нитрат калия является необходимым удобрением для выращивания картофеля, свеклы, подсолнечника, винограда и других растений.

В стекольной промышленности нитрат калия используется в изготовлении, главным образом, изделий из стекла и хрусталя.

В СНГ нитрат калия выпускается на двух предприятиях: на ОАО «Азот» (Березники) в России и ЗАО «Северодонецкое «Азот» на Украине. Предприятия, производящие калиевую селитру, на данный момент работают не на полную мощность, что объясняется невысоким потреблением продукции в сельском хозяйстве. Объемы производства нитрата калия в 2005 г. выросли на 22,4% по сравнению с 2004 г.

В производстве калиевой селитры используется хлорид калия и нитрат натрия. Производство калиевой селитры на Березниковском ОАО «Азот» практически не зависит от сырьевой базы, т.к. хлорид калия поставляется с соседнего предприятия ОАО «Уралкалий», а нитрат натрия производится самим предприятием. На ЗАО «Северодонецкое «Азот» хлорид калия до 2004 г. поставлялся из России с ОАО «Сильвинит» (Соликамск), а в 2005 г. – из Белоруссии. Нитрат натрия производится также на самом предприятии.

Экспорт нитрата калия в РФ в 2005 г. вырос в 8,3 раза по сравнению с 2004 г. Импорт калиевой селитры в Россию довольно стабилен.

На Украине экспортно-импортные операции нестабильны, объемы экспорта-импорта колеблются в довольно широких пределах. Так, к примеру, в 2005 г. на Украину вообще не поставлялась импортная калиевая селитра.

В 2005 г. импортные цены на нитрат калия в РФ были намного ниже экспортных. Такая разница в ценах связана с качеством продаваемого продукта — в Россию поставляется нитрат калия марки В, предназначенный для сельского хозяйства. Из России экспортируется калиевая селитра в основном марок А и Б (используемая для электровакуумной промышленности, оптического стекловарения).

В России прогнозируется развитие аграрного сектора, что повлияет на динамику производства нитрата калия в стране. Исходя из темпов роста промышленного производства в сельском хозяйстве на уровне 2-4% в год, прогнозируется объем производства нитрата калия в 2010 г. около 10 тыс. т.

Введение

В настоящем обзоре представлен обзор рынка калиевой селитры в СНГ (технология, объемы производства и основные производители, экспортно-импортные операции, ценовой обзор и структура потребления продукта). В него включены данные за 1999-2005 гг., а также оцениваются перспективы развития рынка.

Методологически работа «кабинетных» выполнялась методом источники исследований. Были проанализированы многочисленные информации, прежде всего данные государственных органов – Федеральной службы государственной статистики РФ (ФСГС) и Государственного комитета по статистике Украины (Госкомстат Украины), ОАО «РЖД» (статистика железнодорожных перевозок), Федеральной таможенной службы РФ (ФТС РФ) и Государственной таможенной службы Украины (ГТС Украины). Также были привлечены данные предприятий, использована база данных «Инфомайн», материала СМИ и Интернета.

I. Технология производства нитрата калия и используемое в промышленности сырье

І.1. Основные физико-химические характеристики нитрата калия

Нитрат калия (калиевая селитра) представляет собой безводную кристаллическую соль белого цвета (иногда с желтоватым оттенком).

Основные физико-химические константы нитрата калия приведены в таблице 1.

Таблица 1. Физико-химические свойства нитрата калия

Физико-химические свойства	Обозначе ние	Единица измерения	Значения	
Молекулярная масса	1		101,103	
Температура плавления	Тпл	К	610	
Теплота плавления	Q _{пл}	кДж/моль	11,89	
Энтальпия образования при 298 К	ΔH_{ofp}	кДж/моль	-493	
Теплоемкость при 298 К	C_p^{o}	Дж/(моль·К)	93,3	
Энтропия при 298 К		Дж/(моль·К)	133,2	
Плотность при 298 К	ρ	T/M^3	2,11	

Источник: Позин В.А. «Технология минеральных солей», Пфефер Э.Э. «Азотчик»

Термическое разложение нитрата калия начинается при $533-561^{\circ}$ С и происходит с образованием нитрита калия, кислорода и оксида азота. С увеличением температуры от 660 до 700 и 800° С резко увеличивается степень диссоциации нитрата калия, и в расплаве появляется не только нитрит, но и оксид калия K_2O .

В расплавах KNO_3 -Na NO_3 отмечена диссоциация NO_3 до NO_2 и O_2 при температурах ниже $300^{\circ}C$, однако даже при 500- $600^{\circ}C$ разложение нитратного расплава незначительно.

Чистая калиевая селитра не растворяется в этиловом спирте, диэтиловом эфире, растворяется в глицерине, этиленгликоле. Растворимость (C) KNO_3 в воде значительно повышается с ростом температуры (t), эта зависимость показана в таблице 2.

 Таблица 2. Зависимость растворимости нитрата калия в воде с ростом температуры

Обозначе	Единица	Значения температуры и растворимости нитрата						
ние	измерения							
t	°C	-2,84	20	40	60	80	100	180
$C(KNO_3),$	% (масс.)	10,87	24,0	39,0	52,0	62,8	71,1	87,0

Источник: Пфефер Э.Э. «Азотчик»

І.2. Способы производства нитрата калия

В наше время наиболее распространенным способом промышленного производства нитрата калия является конверсионный, основанный на обменном разложении нитрата натрия и хлорида калия. Этот способ используется на заводах по производству нитрата калия в СНГ.

Производство нитрата калия конверсионным способом

Конверсионные способы основаны на реакции обмена между нитратами натрия, кальция или аммония и хлоридом, сульфатом или карбонатом калия.

Наибольшее промышленное распространение получил, ставший традиционным, конверсионный способ производства KNO_3 , основанный на обменном разложении $NaNO_3$ и KCl:

NaNO₃+KCl=NaCl+KNO₃

Равновесное содержание солей, участвующих в этой реакции, сильно зависит от температуры процесса.

На действующих производствах процесс конверсии ведут периодически, когда по мере выпаривания воды в реактор неоднократно добавляют растворы, подвергаемые упариванию, а NaCl отделяют в друкфильтре, и непрерывно. Принципиальная технологическая схема непрерывного производства калиевой селитры приведена на рисунке 1.

Рисунок 1. Схема производства калиевой селитры конверсионным способом

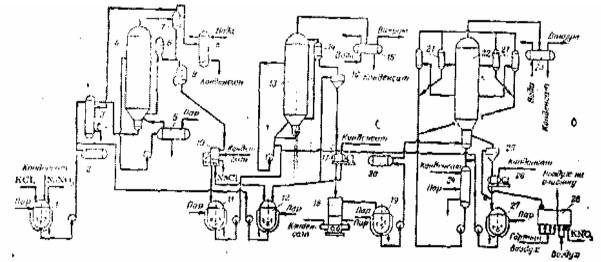


Рис. 11-28. Схема произволства калиевой селитом конверсмонным способом:
 — растворитель: 2, 25 — фильтрирессы; 3 — подотреватель; 4 — подотреватель; 5 — гратоват канора; 4, 14 — фовара; 7 — северетар; 4, 18, 27 — северетар; 4, 18 — подотреватель; 18 — констальнатор 1 ступана; 16, 35 — отстойника; 18 — растворитель кристально (праспараналь); 21 — асрамяные сосуды; 22 — арметальнатор 11 ступана; 24 — растворитель; 36 — сущнана

1 — растворитель; 2, 20 — фильтрпрессы; 3 — подогреватель; 4 — выпарной аппарат; 5 — греющая камера; 6,14 — фонари; 7 — сепаратор; 8, 15, 23 — конденсаторы; 9, 11, 12, 19, 27 — сборники; 10, 17, 26 — центрифуги; 13 — кристаллизатор 1-ой ступени; 16, 25 — отстойники; 18 — растворитель кристаллов («распарник»); 21 — переливные сосуды; 22 — кристаллизатор 2-ой ступени; 24 — растворитель; 28 — сушилка

Источник: Э.Э. Пфэффер «Азотчик»

В растворителе 1 при 80-90°C готовят эквимолекулярный раствор KCl и NaNO₃ концентрацией 50-55%. Раствор подают на рамный фильтрпресс 2 и после отделения нерастворимых примесей смешивают с маточным раствором первой стадии кристаллизации для достижения необходимого соотношения K/NO₃(~0,75), подогревают до 90-100°C в подогревателе 3 и направляют на выпарной аппарат 4, где при 125-145°C раствор упаривается и из него кристаллизуется хлорид натрия.

Осветленный маточный раствор из застойной зоны выпарного аппарата насосом подают в трубки выносной греющей камеры 5, где нагревают паром 0,6 МПа до 130-150°С и подают в сопло струйного насоса. Кинетическая энергия струн в центральной трубе преобразуется в статический напор, обеспечивающий циркуляцию суспензии по замкнутому контуру внутри выпарного аппарата.

Упаренный раствор плотностью 1,68-1,73 т/м³ выводят из выпарного аппарата в сборник **9**, откуда подают на центрифугу **10**. Кристаллы NaCl отделяют от маточника, промывают конденсатом до содержания не более 1-2% KNO₃. Маточный раствор, содержащий 7,5-8,5% (масс.) NaCl, плотностью 1,60-1,65 т/м³ смешивают с маточным раствором II ступени кристаллизации.

В кристаллизаторе раствор охлаждается до $48-55^{\circ}$ С за счет самоиспарения воды под разряжением 10-13 кПа, при этом кристаллизуется KNO_3 . Суспензию сгущают в отстойнике 16 и на центрифуге 17 отделяют кристаллы KNO_3 от маточника и промывают их. Осветленный раствор из отстойника и маточный раствор после центрифуги срабатываются, смешиваясь с исходным раствором.

Первичные кристаллы KNO₃ с содержанием 1,4-1,7% NaCl растворяют в распарнике 18, куда подают конденсат сокового пара и острый пар давлением 0,4 МПа. 60-65%-ный раствор KNO₃ при 90-100°C через рамный фильтрпресс 20 подают в кристаллизатор II ступени 22, где за счет самоиспарения под разрежением 12 кПа он охлаждается до 48-52°C и перенасыщается по KNO₃. Необходимый вакуум в кристаллизаторах I и II ступеней поддерживают последовательно установленными паровым эжектором и вакуум-насосом.

Осветленный раствор из отстойных зон кристаллизатора через переливные сосуды 21 поступает в растворитель со змеевиковым теплообменником 24, где растворяются излишние зародыши и мелкие кристаллы.

Суспензию KNO₃ сгущают в отстойнике **25**, кристаллы KNO₃ отделяют от маточника и промывают паровым конденсатом на центрифуге **26**. Маточник с содержанием 46-48% KNO₃ и 1,8-2,4% NaCl подают на рециркуляцию и I ступень кристаллизации.

Сушку и охлаждение калиевой селитры ведут в сушилках с кипящим слоем 28. Влажную соль шнеком подают в сушильную камеру, в нижнюю часть которой вентилятором подают подогретый до 160-180°С воздух.

Воздух подогревают паром давлением 1,3 МПа. Сухая соль пересыпается в камеру охлаждения, где ее охлаждают воздухом до 40°С, и после упаковки направляют на склад.

В таблице 3 приведены расходные коэффициенты на 1 т калиевой селитры.

Таблица 3. Расходные коэффициенты на 1 т калиевой селитры

Коэффициент	Единица измерения	Значение
Нитрат натрия (100% NaNO ₃)	T	0,87-0,89
Хлорид калия (95% КСІ)	T	0,80-0,81
Электроэнергия	кВт∙ч	160-190
Пар	ГДж	12-16
Вода	M^3	290
Воздух технологический	M^3	160

Источник: Пфэфер Э. Э. «Азотчик»

Существуют и другие конверсионные методы получения нитрата калия. Так, во Франции разработан и осуществлен процесс, основанный на реакции нитрата аммония и хлорида калия:

Существенным недостатком данного способа является необходимость после выделения нитрата калия при низких температурах выпаривать чрезвычайно агрессивные растворы хлорида аммония. Поэтому все оборудование, находящееся в контакте с NH_4Cl , изготовляется из углеродомолибденовой стали.

Разработанный в Швейцарии способ получения калиевой селитры заключается в *обменном разложении хлорида калия с нитратом кальция*:

$$2KCl+Ca(NO_3)_2=2KNO_3+CaCl_2$$
.

Способ отличается многостадийностью: после выделения при температуре (-10)-(-20)°С нитрата калия маточный раствор выпаривают, а выделяющуюся при охлаждении до 20°С двойную соль KNO_3 · $CaCl_2$ · $2H_2O$ возвращают на первую стадию. Из этой соли при охлаждении раствора до 10°С может быть выделен $CaCl_2$ · $6H_2O$. Выход нитрата калия в данном способе не превышает 76%, при утилизации маточного раствора после отделения хлорида кальция выход KNO_3 может быть повышен до 92%.

Предложено проводить конверсию в среде изопропилового спирта, а также полиспиртов и кетонов, в которых KNO_3 практически нерастворим, а $CaCl_2$ сравнительно хорошо растворим.

Разработан конверсионный *способ получения нитрата калия на основе нитрата кальция и сульфата калия*:

$$K_2SO_4+Ca(NO_3)_2\rightarrow 2KNO_3+CaSO_4$$
.

В данном способе гипс отфильтровывают при 60° С, а из фильтрата при охлаждении до 20° С кристаллизуется нитрат калия. Во избежание потерь калия в виде двойной соли $CaSO_4 \cdot K_2SO_4 \cdot 2H_2O$ при кристаллизации гипса в раствор вводят избыток нитрата кальция и тщательно контролируют этот избыток. Примеси сульфатов и хлоридов магния и натрия, содержащиеся в сырье, выводят при упаривании маточного раствора. Получаемый таким образом продукт содержит до 99,9% KNO₃.

Также существуют другие способы получения калиевой селитры, но они практически не используются в промышленном производстве.

Прямые способы производства калиевой селитры

Прямые способы получения калиевой селитры основаны на взаимодействии хлорида калия с азотной кислотой, жидкими или газообразными оксидами азота:

$$KCl+HNO_3=KNO_3+HCl$$
 (1)

$$3HCl+HNO3=NOCl+Cl2+2H2O$$
 (2)

$$2KCl+4HNO_3=3KNO_3+NOCl+Cl_2+2H_2O$$
 (3)

$$KCl+N_2O_4=KNO_3+NOCl (4)$$

Реакция (1) идет слева направо при сравнительно низких температурах (25-60°С). Реакция (2) легко обратима, начинается при низких температурах; при 100°С равновесие сдвинуто почти нацело в сторону NOCl и Cl₂.

Образованию хлористого нитрозила способствует повышение концентрации кислот в растворе. При большой концентрации кислот и высокой температуре давление паров HCl и HNO₃ над раствором увеличивается, что приводит к образованию больших количеств хлористого нитрозила и хлора. При применении 30-40%-ной азотной кислоты и температуре ниже 60°C потери азота в виде хлористого нитрозила невелики, и хлор накапливается в растворе в виде HCl. При охлаждении раствора из него выделяется значительная доля KNO₃, а маточный раствор может быть возвращен в цикл. В дальнейшем, при накоплении значительных количеств соляной кислоты, перед возвратом раствора в процесс необходимо отгонять из него часть хлористого водорода. Отгоняемые пары конденсируются в виде соляной кислоты.

В стальной реактор, футерованный диабазовыми плитками, подают азотную кислоту, маточный раствор от предыдущей операции и загружают

твердый хлорид калия. Реакционный раствор перемешивают сжатым воздухом и нагревают острым паром до 75-88°С. Вначале реакция протекает бурно, затем замедляется. Образующиеся газы и водяные пары направляют воздушным эжектором в абсорбер. С газами удаляется и часть хлористого водорода. По окончании реакции раствор, содержащий в среднем 520 г/л KNO₃, 35-65 г/л HNO₃ и 120-140 г/л HCl, поступает на кристаллизацию. Выделяющийся при охлаждении раствора до 25-30°С нитрат калия отделяют на центрифуге, промывают и высушивают. Маточный раствор в смеси с промывными водами частично возвращают в реактор. Приблизительный состав возвращаемого раствора: 90-110 г/л KNO₃, 20-40 г/л HNO₃ и 70-80 г/л HCl. Часть маточного раствора нейтрализуют раствором едкого кали и направляют на выпаривание, из выпаренного раствора кристаллизуют нитрат калия, который может быть использован в качестве продукта 3-го сорта.

Выход нитрата калия по азотной кислоте при использовании части маточного раствора составляет \sim 70%. На производство 1 т продукта расходуется только 4 т пара вместо 11 т по методу конверсии КСl и NaNO₃. Получение KNO₃ по реакции (1) можно осуществить с помощью жидких экстрагентов — бутилового, изоаминового спиртов и т. п. — с последующей их регенерацией.

Этот способ, не нашедший пока широкого распространения в промышленности вследствие трудностей, связанных главным образом со значительной коррозией аппаратуры, представляет, однако, интерес, так как не требует затраты дефицитных щелочей и большого расхода пара.

Интересен метод получения KNO_3 , основанный на осуществлении топохимической реакции между твердым хлоридом калия и газообразной или жидкой двуокисью азота:

KCl+2NO₂=KNO₃+NOCl

Эта реакция каталитически ускоряется в присутствии ничтожных количеств воды и идет с большой скоростью при низких температурах (-10-12°C). Скорость реакции, лимитируемая скоростью диффузии, возрастает при применении тонкоизмельченного хлорида калия и при увеличении скорости жидкого или газового потока, омывающего твердые частицы.

Реакция с жидкой двуокисью азота может проводиться в автоклаве, а с газообразной – в шаровых или трубчатых мельницах.

Себестоимость калиевой селитры, полученной взаимодействием жидких окислов азота с хлоридом калия, должна быть приблизительно такой же, как и при получении ее методом катионного обмена (последний метод, однако, дает более чистый нитрат калия).

Получение нитратов калия и натрия взаимодействием хлоридов с NO_2 или с азотной кислотой является одним из экономичных путей производства этих продуктов при условии использования хлора, выделяющегося в газовую фазу виде Cl_2 , HCl и NOCl. Особенно важно использование хлористого

нитрозила, так как в противном случае потеря содержащегося в нем азота делает производство нерентабельным. Хлористый нитрозил может быть окислен до NO_2 и Cl_2 кислородом воздуха в присутствии концентрированной азотной кислоты или в присутствии катализаторов: MnO_2 , Fe_2O_3 и др. Хлористый нитрозил может быть использован также для хлорирования окислов и других веществ; освобождающаяся при этом NO может быть переработана в азотную кислоту.

Существуют и другие методы переработки хлористого нитрозила.

В последнее время интерес к этому способу привлекает внимание еще и потому, что хлористый нитрозил, ранее не находивший применение, может быть использован для получения полупродуктов, применяемых в производстве полиамидных смол.

Разработаны также способы получения KNO_3 из KCl и азотной кислоты без образования NOCl.

Получение нитрата калия нейтрализацией щелочей азотной кислотой

Вследствие необходимости затраты дорого сырья — едкого кали или поташа и азотной кислоты — этот способ осуществляют довольно редко. Для нейтрализации берется 30-35% раствора КОН и 50%-ная кислота или сухой поташ, содержащий 85-87% $K_2\text{CO}_3$ и около 5% КНСО $_3$, и 25-30%-ная азотная кислота. Полученный раствор, содержащий около 30% KNO $_3$, выпаривают при 110-120°C, отфильтровывают от примесей на фильтрпрессе и направляют на кристаллизацию. Кристаллы отфуговывают и высушивают.

<u>Получение нитрата калия абсорбцией калиевыми щелочами</u> нитрозных газов

Этот способ также применяется в ограниченных масштабах из-за дефицитности едкого кали и особенного поташа. Процесс аналогичен процессу получения нитрата натрия. При подаче на абсорбцию раствора едкого кали, отбираемый из первой абсорбционной башни щелок содержит $350-400~\text{г/л}~\text{KNO}_2$, $80-100~\text{г/л}~\text{KNO}_3$ и 2-3~г/л~KOH. Инверсия проводится при $70-80^{\circ}\text{C}$ с избытком азотной кислоты до 30~г/л.